

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 742-750

www.elsevier.com/locate/jorganchem

Chiral "P–N–P" ligands, $(C_{20}H_{12}O_2)PN(R)PY_2$ [R = CHMe₂, Y = C₆H₅, OC₆H₅, OC₆H₄-4-Me, OC₆H₄-4-OMe or OC₆H₄-4-^tBu] and their allyl palladium complexes $\stackrel{\stackrel{_{\wedge}}{\sim}}{\sim}$

Swadhin K. Mandal^a, G.A. Nagana Gowda^b, Setharampattu S. Krishnamurthy^{a,*}, Thomas Stey^c, Dietmar Stalke^c

^a Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
 ^b Sophisticated Instruments Facility, Indian Institute of Science, Bangalore 560012, India
 ^c Institut f
ür Anorganische Chemie, Universit
ät W
ürzburg, Am Hubland, 97074 W
ürzburg, Germany

Received 26 May 2004; accepted 6 September 2004 Available online 10 December 2004

Abstract

Chiral "P–N–P" ligands, $(C_{20}H_{12}O_2)PN(R)PY_2$ [R = CHMe₂, Y = C₆H₅ (1), OC₆H₅ (2), OC₆H₄-4-Me (3), OC₆H₄-4-OMe (4) or OC₆H₄-4-^tBu (5)] bearing the axially chiral 1,1'-binaphthyl-2,2'-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η^3 -allyl palladium complexes, $[Pd(\eta^3-1, 3-R'_2-C_3H_3)\{\kappa^2-(racemic)-(C_{20}H_{12}O_2)PN(CHMe_2)PY_2\}](PF_6)$ (R' = Me or Ph; Y = C₆H₅ or OC₆H₅) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of $[Pd(\eta^3-1, 3-Ph_2-C_3H_3)\{\kappa^2-(racemic)-(C_{20}H_{12}O_2)PN(CHMe_2)PY_2\}](PF_6)$ (R' = Me or Ph; Y = C₆H₅ or OC₆H₅) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of $[Pd(\eta^3-1, 3-Ph_2-C_3H_3)\{\kappa^2-(racemic)-(C_{20}H_{12}O_2)PN(CHMe_2)PPh_2\}](PF_6)$ has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Chiral "P-N-P" ligands; n³-allyl palladium complexes; NMR spectroscopy; X-ray crystal structure; allylic alkylation

1. Introduction

There is considerable interest in the design and synthesis of new trivalent chiral phosphorus ligands in view of their applications in enantioselective catalysis, which has developed in recent years as a topic of fundamental importance [1]. Diphosphazanes constitute a class of versatile short-bite bidentate phosphorus-donor ligands based on the "P–N–P" framework that have engendered a varied and extensive transition metal organometallic chemistry [2]. An attractive feature of diphosphazane ligands is that "chirality" can be incorporated at the

* Corresponding author. Fax: +91 80 23600683.

phosphorus centres as well as at the substituents attached to the nitrogen or to the two phosphorus atoms. There are only a few reports on chiral diphosphazanes and their transition metal complexes [2a, 3-6]. As a part of our ongoing investigations on the organometallic chemistry of diphosphazane ligands, we had reported the synthesis and dynamic behaviour of allyl palladium complexes of a range of diphosphazane and diphosphazane monosulfide ligands [7]. The chemistry of η^3 -allyl palladium(II) complexes is a topic of considerable importance in view of the various dynamic processes observed in these systems and also their potential applications in asymmetric synthesis [8,9]. Herein, we report the design and synthesis of several chiral diphosphazane ligands based on the "P-N-P" backbone bearing C2-symmetric [1,1'-binaphthyl]-2,2'-dioxy moiety and the

 $^{^{\}rm th}$ Organometallic chemistry of diphosphazanes – Part 21; for part 20, see [6d].

E-mail address: sskrish@ipc.iisc.ernet.in (S.S. Krishnamurthy).

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2004.09.082

reactivity of some of these chiral diphosphazane ligands with η^3 -allyl palladium dimers. The results of high-field two-dimensional NMR studies on the resulting η^3 -allyl palladium complexes of chiral diphosphazanes are reported. Preliminary experiments have been carried out to probe the utility of some of these ligands in palladium catalysed alkylation reactions. A part of this work has been reported in a Conference Proceedings [6a].

2. Experimental

2.1. Materials and general procedures

All reactions and manipulations were carried out under an atmosphere of dry nitrogen using standard Schlenk and vacuum-line techniques. The solvents were purified by standard procedures [10] and distilled under nitrogen prior to use. The synthesis of (racemic)-1,1'binapthyl-2,2'-diol [11] and its resolution [12] were carried out as described in the literature. The chlorobridged allyl palladium dimers, $[Pd(\eta^3-1,3-Me_2 C_{3}H_{3}(\mu-Cl)]_{2}$ [13] and $[Pd(\eta^{3}-1,3-Ph_{2}-C_{3}H_{3})(\mu-Cl)]_{2}$ [14] were prepared according to the literature procedures. The NMR spectra were recorded at 25 °C using Bruker AMX-400 MHz and Bruker ACF-200 MHz spectrometers. Chemical shifts downfield from the reference standard were assigned positive values. Optical rotations were measured on a Jasco DIP-370 digital polarimeter. Elemental analyses were carried out using a Perkin-Elmer 2400 CHN analyser.

2.2. (*Racemic*, *R* or *S*)- $(C_{20}H_{12}O_2)PN(CHMe_2)PPh_2$ (1)

The ligand, *racemic*-(C₂₀H₁₂O₂)PN(CHMe₂)PPh₂ (1) was prepared by a slight modification of the procedure previously described [15]. The phosphoro chloridite (*racemic*)-(C₂₀H₁₂O₂)PCl was prepared [16] by the reaction of PCl₃ with (*racemic*)-1,1'-binaphthyl-2,2'-diol in toluene at -78 °C in the presence of Et₃N and was treated with Ph₂PNH(CHMe₂) in toluene to obtain *racemic* – (C₂₀H₁₂O₂)PN(CHMe₂)PPh₂ (1) (yield 50%). In the same way, (*R* or *S*)-(C₂₀H₁₂O₂)PN(CHMe₂)PPh₂ was prepared by starting from (*R* or *S*)-(C₂₀H₁₂O₂)PCl. ³¹P{¹H} NMR (81.0 MHz, toluene): 28.5 (d, ²*J*(P,P) = 25.8 Hz); 148.3 (d). $[\alpha]_D^{25} = -161.5^{\circ}$ (*c* = 1.0, CH₂Cl₂) for (*R*)-(C₂₀H₁₂O₂)PN(CHMe₂)PPh₂ and $[\alpha]_D^{25} = +166.0^{\circ}$ (*c* = 1.0, CH₂Cl₂) for (*S*)-(C₂₀H₁₂O₂)PN(CHMe₂)PPh₂.

2.3. (Racemic, R or S)- $(C_{20}H_{12}O_2)PN(CHMe_2)P$ - $(OC_6H_5)_2$ (2)

A solution of (*racemic*, *R* or *S*)-($C_{20}H_{12}O_2$)PCl (0.01 mol) in 30 cm³ toluene was added drop-wise at 0 °C to a 30 cm³ toluene solution of Me₂CHNH₂ (2.6 cm³, 0.03 mol). The reaction mixture was warmed to 25 °C and

stirred for 6 h. The precipitate of Me₂CHNH₂ · HCl was filtered off and the solvent removed under reduced pressure to obtain a pale yellow viscous oil. This oil was dissolved in 30 cm³ of toluene and PCl₃ (1.0 cm³, 0.012 mol) in 20 cm³ toluene was added drop-wise to it at 0 °C in the presence of Et_3N (2.1 cm³, 0.015 mol). The reaction mixture was warmed to 25 °C and stirred for 12 h. The precipitate of $Et_3N \cdot HCl$ was filtered off and solvent was evaporated to dryness under reduced pressure to obtain (C₂₀H₁₂O₂)PN(CHMe₂)PCl₂ as a yellow viscous oil $[^{31}P\{^{1}H\}$ NMR (81.0 MHz, toluene): 157.3 (d, ${}^{2}J(P,P) = 12.0$ Hz); 169.4 (d)]. A solution of this oil in 30 cm³ toluene was added drop-wise to a mixture of phenol (1.880 g, 0.02 mol) and Et_3N (4.2 cm³, 0.03 mol) in 30 cm³ toluene at 0 °C. The reaction mixture was stirred for 12 h at 25 °C; the resulting $Et_3N \cdot HCl$ was removed by filtration and the filtrate was evaporated to dryness to give a light yellow foamy solid. This solid was loaded over a silica gel column and chromatographed ($\sim 400 \text{ cm}^3$ of a 1:1 mixture (v/v) benzene/hexane (b.p. 40–60 $^{\circ}$ C) was used as eluant) to obtain the title compound 2 as a colourless solid after evaporation of the eluant. Yield: 52%. Anal. Calc. for C₃₅H₂₉P₂NO₄: C, 71.3; H, 4.9; N, 2.4. Found: C, 70.8; H, 5.0; N, 2.0%. M.p.122-123 °C. The NMR data for (racemic)- $(C_{20}H_{12}O_2)PN(CHMe_2)P(OC_6H_5)_2$ are given here. ¹H NMR (200 MHz, CDCl₃): 4.32 (m, CH-CHMe₂); 1.61 (d, ${}^{3}J(H,H) = 6.8$ Hz, CH_{3} -CHMe₂); 1.45 (d, ${}^{3}J(H,H) = 6.8$ Hz, CH_{3} -CHMe₂). ${}^{31}P{}^{1}H{}$ NMR (81.0 MHz, toluene): 156.4 (d, ${}^{2}J(P,P) = 56.3$ Hz); 136.2 (d). $[\alpha]_D^{25} = -274.0^\circ$ (c = 1.0, CH₂Cl₂) for $(R)-(C_{20}H_{12}O_2)$ PN(CHMe₂)P(OC₆H₅)₂ and $[\alpha]_D^{25} =$ $+231.0^{\circ}$ (c = 1.0, CH₂Cl₂) for (S)-(C₂₀H₁₂O₂)PN- $(CHMe_2)P(OC_6H_5)_2$.

2.4. $(Racemic) - (C_{20}H_{12}O_2)PN(CHMe_2)P(OC_6H_4-4-Me)_2$ (3)

The ligand was prepared following the same procedure as described for **2** using 4-methyl phenol (1.842 g, 0.02 mol). The title compound could not be isolated in a pure form owing to its high sensitivity to air and moisture. ¹H NMR (200 MHz, CDCl₃): 4.28 (m, *CH*–CHMe₂); 2.34, 2.23 (s, *CH*₃-OC₆H₄-4-Me); 1.57, 1.46 (d, ³*J*(H,H) = 6.4 Hz, *CH*₃–CHMe₂). ³¹P{¹H} NMR (81.0 MHz, toluene): 158.4 (d, ²*J*(P,P) = 56.6 Hz); 137.2 (d).

2.5. $(Racemic) - (C_{20}H_{12}O_2)PN(CHMe_2)P(OC_6H_4-4-OMe)_2$ (4)

The ligand was prepared following the same procedure as described for **2** using 4-methoxy phenol (2.482 g, 0.02 mol). Yield: 54%. Anal. Calc. for $C_{37}H_{33}P_2NO_6$: C, 68.4; H, 5.1; N, 2.2. Found: C, 68.7; H, 5.1; N, 2.1%. M.p. 121–122 °C. ¹H NMR (200 MHz, CDCl₃): 4.23 (m, *CH*–CHMe₂); 3.80, 3.71 (s, *CH*₃-OC₆H₄-4-OMe); 1.56, 1.44 (d, ${}^{3}J(H,H) = 6.9$ Hz, CH_{3} -CHMe₂). ${}^{31}P{}^{1}H{}$ NMR (81.0 MHz, toluene): 155.7 (d, ${}^{2}J(P,P) = 64.5$ Hz); 138.3 (d).

2.6. (*Racemic*, *R* or *S*)-($C_{20}H_{12}O_2$)*PN*(*CHMe*₂)*P*-(OC_6H_4 -4-^{*t*}*Bu*)₂ (**5**)

The ligand was prepared following the same procedure as described for **2** using 4-tert-butyl phenol (3.020 g, 0.02 mol). Yield: 55%. Anal. Calc. for C₄₃H₄₅P₂NO₄: C, 73.6; H, 6.4; N, 2.0. Found: C, 73.5; H, 6.4; N, 1.8%. M.p.124–125 °C. The NMR data for (*racemic*)-(C₂₀H₁₂O₂)PN(CH-Me₂)P(OC₆H₄-4-^tBu)₂ are presented here. ¹H NMR (200 MHz, CDCl₃): 4.28 (m, *CH*–CHMe₂); 1.59 (d, ³*J*(H,H) = 7.0 Hz, *CH*₃–CHMe₂); 1.43 (d, ³*J*(H,H) = 6.8 Hz, *CH*₃–CHMe₂); 1.35 (s, *CH*₃–^tBu); 1.24 (s, *CH*₃–^tBu). ³¹P{¹H} NMR (81.0 MHz, toluene): 155.9 (d, ²*J*(P,P) = 63.7 Hz); 136.4 (d). [α]_D²⁵ = -162.0° (*c* = 1.0, CH₂Cl₂) for (*R*)-(C₂₀H₁₂O₂)PN(CHMe₂)P(OC₆H₄-4-^tBu)₂ and [α]_D²⁵ = +146.0° (*c* = 1.0, CH₂Cl₂) for (*S*)-(C₂₀H₁₂O₂)PN(CHMe₂)P(OC₆H₄-4-^tBu)₂.

2.7. $[Pd(\eta^3-1,3-Me_2-C_3H_3) \{\kappa^2-(racemic)-(C_{20}H_{12}O_2)-PN(CHMe_2)PPh_2\}](PF_6)$ (6)

A mixture of 0.042 g (0.99 $\times 10^{-4}$ mol) of [Pd(η^3 -1,3- $Me_2-C_3H_3(\mu-Cl)l_2$, 0.033 g (2.02 × 10⁻⁴ mol) of NH₄PF₆ and 0.115 g $(2.06 \times 10^{-4} \text{ mol})$ of (*racemic*)-(C₂₀H₁₂O₂) PN(CHMe₂)PPh₂ was dissolved in 20 cm³ of acetone. The solution was stirred for 1 h at 25 °C and the white precipitate formed during the reaction was filtered off. The resulting filtrate was concentrated under reduced pressure to 10 cm³ and the solution was layered by adding 10 cm³ of hexane (b.p. 40–60 °C) to yield colourless crystals. Yield: 90%. Anal. Calc. for C₄₀H₃₈F₆P₃O₂NPd: C, 53.4; H, 4.3; N, 1.6. Found: C, 55.2; H, 4.5; N, 1.5%. M.p. 165–167 °C dec. Major isomer 6a: ¹H NMR (400 MHz, CDCl₃): 5.26 (t, ${}^{3}J(H,H) = 11.8$ Hz, H_c); 4.50 (m, H_a and H'_a); 1.64 (m, CH_3 -allyl); 0.83 (m, CH_3 -allyl). ¹³C NMR (100.6 MHz, CDCl₃): 120.6 (br.d, $^{2}J(P,C) = 12.5$ Hz, central allyl carbon); 89.8 (dd, ${}^{2}J(P,C)_{trans} = 29.3 \text{ Hz}, {}^{2}J(P,C)_{cis} = 16.7 \text{ Hz}, \text{ terminal al-}$ lyl carbon); 85.9 (dd, ${}^{2}J(P,C)_{trans} = 47.3$ Hz, $^{2}J(P,C)_{cis} = 8.4$ Hz, terminal allyl carbon); 18.7 (br.s, CH_3 -allyl); 18.5 (br.s, CH_3 -allyl). ³¹P{¹H} NMR (162.0 MHz, CDCl₃): 59.0 (d, ${}^{2}J(P,P) = 64.6$ Hz); 113.4 (d). Minor isomer **6b**: ¹H NMR (400 MHz, CDCl₃): 5.93 (t, ${}^{3}J(H,H) = 12.0$ Hz, H_c); 4.10 (m, H_a); 3.94 (m, H'_a); 1.75 (m, CH₃-allyl); 1.30 (m, CH₃-allyl). ¹³C NMR (100.6 MHz, CDCl₃): 121.8 (br.d, ${}^{2}J(P,C) = 14.0$ Hz, central allyl carbon); 92.2 (dd, ${}^{2}J(P,C)_{trans} = 29.1$ Hz, $^{2}J(P,C)_{cis} = 17.0$ Hz, terminal allyl carbon); 84.1 (dd, ${}^{2}J(P,C)_{trans} = 46.5 \text{ Hz}, {}^{2}J(P,C)_{cis} = 8.2 \text{ Hz}, \text{ terminal allyl}$ carbon); 19.1 (br.s, CH₃-allyl); 18.8 (br.s, CH₃-allyl). $^{31}P{^{1}H}$ NMR (162.0 MHz, CDCl₃): 57.7 (d, ${}^{2}J(P,P) = 58.1 \text{ Hz}$; 114.2 (d).

2.8. $[Pd(\eta^3 - 1, 3 - Ph_2 - C_3H_3) \{\kappa^2 - (racemic) - (C_{20}H_{12}O_2) - PN(CHMe_2)PPh_2\}](PF_6)$ (7)

The title complex was prepared by the same procedure as that for 6. Crystals suitable for X-ray crystallography were grown from toluene/hexane (5:1 v/v) mixture. Yield: 78%. Anal. Calc. for C₅₀H₄₂F₆P₃O₂NPd: C, 60.0; H, 4.2; N, 1.4. Found: C, 60.6; H, 3.9; N, 1.2%. M.p. 193-195 °C dec. Major isomer 7a: ¹H NMR (400 MHz, CDCl₃): 6.41 (m, H_c) ; 5.85 (m, H_a) ; 5.75 $(m, (m, H'_a)$. ¹³C NMR (100.6 MHz, CDCl₃): 114.9 (dd, ${}^{2}J(P,C) = 17.4$ and 9.7 Hz, central allyl carbon); 93.2 (dd, ${}^{2}J(P,C)_{trans} = 28.3$ Hz, ${}^{2}J(P,C)_{cis} = 16.5$ Hz, terminal allyl carbon); 89.2 (dd, $^{2}J(P,C)_{trans} = 43.1 \text{ Hz}, \,^{2}J(P,C)_{cis} = 8.1 \text{ Hz}, \text{ terminal allyl}$ carbon). ³¹P{¹H} NMR (162.0 MHz, CDCl₃): 57.9 (d, ${}^{2}J(P,P) = 115.3$ Hz); 110.7 (d). Minor isomer **7b**: {}^{1}H NMR (400 MHz, CDCl₃): 6.95 (m, H_c); 5.59 (m, H_a); 5.17 (m, H'_a). ¹³C NMR (100.6 MHz, CDCl₃): 113.5 (dd, ${}^{2}J(P,C) = 16.7$ and 9.2 Hz, central allyl carbon); 96.0 (dd, ${}^{2}J(P,C)_{trans} = 27.5$ Hz, ${}^{2}J(P,C)_{cis} = 17.1$ Hz, terminal allyl carbon); 86.8 (dd, ${}^{2}J(P,C)_{trans} = 43.2$ Hz, ${}^{2}J(P,C)_{cis} = 8.0$ Hz, terminal allyl carbon). ${}^{31}P\{{}^{1}H\}$ NMR (162.0 MHz, CDCl₃): 56.8 (d, ${}^{2}J(P,P) = 122.1$ Hz); 109.8 (d).

2.9. $[Pd(\eta^3-1,3-Ph_2-C_3H_3) \{\kappa^2-(racemic)-(C_{20}H_{12}O_2)-PN(CHMe_2)P(OC_6H_5)_2\}](PF_6)$ (8)

The title complex was prepared by the same procedure described above for 6. Yield: 65%. Anal. Calc. for C₅₀H₄₂F₆P₃O₄NPd: C, 58.1; H, 4.1; N, 1.4. Found: C, 58.0; H, 4.4; N, 1.2%. M.p. 170-172 °C dec. Major isomer 8a: ¹H NMR (400 MHz, CDCl₃): 6.24 (m, H_c); 5.52 (m, H_a and H'_a). ¹³C NMR (100.6 MHz, CDCl₃): 114.7 (t, ${}^{2}J(P,C) = 15.4$ Hz, central allyl carbon); 96.4 $(dd, {}^{2}J(P,C)_{trans} = 38.2 \text{ Hz}, {}^{2}J(P,C)_{cis} = 11.8 \text{ Hz}, \text{ termi-}$ nal allyl carbon); 89.9 (dd, ${}^{2}J(P,C)_{trans} = 36.0$ Hz, $^{2}J(P,C)_{cis} = 14.4$ Hz, terminal allyl carbon). $^{31}P\{^{1}H\}$ NMR (162.0 MHz, CDCl₃): 110.8 (d, ${}^{2}J(P,P) = 58.5$ Hz); 115.5 (d). Minor isomer 8b: ¹H NMR (400 MHz, CDCl₃): 6.62 (m, H_c); 5.50 (m, H'_a); 4.88 (m, H_a). ¹³C NMR (100.6 MHz, CDCl₃): 113.0 (t, ${}^{2}J(P,C) = 14.3$ Hz, central allyl carbon); 95.6 (dd, ${}^{2}J(P,C)_{trans} = 32.9$ Hz, ${}^{2}J(P,C)_{cis} = 14.4$ Hz, terminal allyl carbon); 90.6 $(dd, {}^{2}J(P,C)_{trans} = 39.8 \text{ Hz}, {}^{2}J(P,C)_{cis} = 13.8 \text{ Hz}, \text{ termi-}$ nal allyl carbon). ${}^{31}P{}^{1}H{}$ NMR (162.0 MHz, CDCl₃): 110.5 (d, ${}^{2}J(P,P) = 66.9$ Hz); 114.9 (d).

2.10. General procedure for palladium-catalysed allylic alkylation

The ligand (2.5 mol%) and $[Pd(\eta^3-C_3H_5)(\mu-Cl)]_2$ (1 mol%) were dissolved in 4 cm³ of degassed (by three freeze, pump and thaw cycles) CH₂Cl₂. A solution of (*racemic*)-1,3-diphenyl-2-propenyl acetate (I) (1 × 10⁻³ mol), in 2 cm³ CH₂Cl₂, was added followed by dimethyl

malonate $(2 \times 10^{-3} \text{ mol})$, N,O-bis(trimethylsilyl)acetamide $(2 \times 10^{-3} \text{ mol})$ and a catalytic amount (2 mol%)of KOAc. The mixture was stirred at 25 °C for 24 h and the reaction was monitored by TLC. A saturated aqueous solution of NH₄Cl (10 cm³) was added to the reaction mixture and the organic part was extracted with diethyl ether $(10 \times 3 \text{ cm}^3)$. The ether extract was filtered over activated celite, washed with water $(3 \times 10 \text{ cm}^3)$ and dried over anhydrous Na₂SO₄. Solvent was removed from the ether extract under reduced pressure and the crude product was purified by column chromatography over silica gel [eluant: hexane/ethyl acetate, 9:1 (v/v)]. The optical rotation was measured for the product, PhCH=CH-CHPh{ $CH(CO_2Me)_2$ } (II) and the enantiomeric excess (ee) was calculated from the optical rotation value using the literature data [17].

2.11. X-ray crystallography

Crystal data for **7a** were collected from shockcooled, oil coated crystals on a BRUKER-APEX diffractometer with a D8 goniometer (graphitemonochromated Mo K α radiation, $\lambda = 0.71073$ Å) equipped with a low temperature device in omega-scan mode at 173(2)K [18]. The data was integrated with SAINT [19] and an empirical absorption correction was applied [20]. The structure was solved by direct methods (SHELXS-97) [21] and refined by full-matrix least squares methods against F^2 (SHELXL-97) [22]. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were assigned ideal positions and refined using a riding model with U_{iso} constrained to 1.2 times the U_{eq} value of the parent C(sp²) atom and 1.5 times the U_{eq} value of the parent C(sp³) atom, respectively. The disorder of the hexafluorophosphate moiety was refined using distance and similarity restraints.

3. Results and discussion

3.1. Synthesis of ligands

The optically pure unsymmetrical diphosphazane ligand, (*R* or *S*)-($C_{20}H_{12}O_2$)PN(CHMe₂)PPh₂ (1) has been prepared following the procedure adopted previously for the synthesis of (*racemic*)-($C_{20}H_{12}O_2$)PN(CHMe₂)-PPh₂ [15] by the reaction of the aminophosphane, Ph₂PNH(CHMe₂) with 1,1'-binaphthyl-2,2'phosphoro chloridite, (*R* or *S*)-($C_{20}H_{12}O_2$)PCl in the presence of Et₃N (Scheme 1). Unsymmetrical diphosphazane ligands of the general formula, (*racemic*)-($C_{20}H_{12}O_2$)PN (CHMe₂)PY₂ [Y = OC₆H₅ (2), OC₆H₄-4-Me (3), OC₆H₄-4-OMe (4) or OC₆H₄-4-^tBu (5)] have been prepared as shown in Scheme 1. The reaction of (*racemic*)-($C_{20}H_{12}O_2$)PCl with Me₂CHNH₂ in toluene gives

(i) Ph₂PNH(CHMe₂), Et₃N, toluene, 12 h; (ii) Me₂CHNH₂, toluene, 6 h; (iii) PCl₃, Et₃N, toluene, 12 h; (iv) YH, Et₃N, toluene, 12 h.

the amino derivative, $(racemic)-(C_{20}H_{12}O_2)PNH-(CHMe_2)$ which is treated with PCl₃ in the presence of Et₃N to yield $(racemic)-(C_{20}H_{12}O_2)PN(CHMe_2)PCl_2$. Subsequent derivatisation with various phenols gives the unsymmetrically substituted diphosphazane ligands **2–5**.

The ligands 1–5 are characterized by ¹H and ³¹P{¹H} NMR spectra. The ³¹P{¹H} NMR spectra display an AX pattern; the doublet in the range 148–159 ppm is assigned to the $-P(O_2C_{20}H_{12})$ phosphorus nucleus in these ligands. The resonance at 28.5 ppm is assigned to the $-PPh_2$ phosphorus nucleus in ligand 1. The PY₂ phosphorus nucleus in ligands 2–5 resonates as a doublet in the range 136–139 ppm.

3.2. Reactions of 1 and 2 with chloro-bridged allyl palladium dimers

The cationic η^3 -allyl palladium complexes **6–8** have been prepared by the treatment of the chlorodimer, $[Pd(\eta^3 - 1, 3 - R'_2 - C_3H_3)(\mu - Cl)]_2$ (R' = Me or Ph) with the appropriate diphosphazane ligand, (racemic)- $(C_{20}H_{12}O_2)PN(CHMe_2)PY_2$ [Y = C₆H₅ (1) or $Y = OC_6H_5$ (2)] in the presence of NH_4PF_6 as shown in Scheme 2. The ${}^{31}P{}^{1}H$ NMR spectra of these complexes reveal the presence of two diastereomers in solution; two sets of AX patterns are observed in each case. The $-PPh_2$ phosphorus chemical shifts (56.8–59.0 ppm) lie very much down field as compared to that of the free ligand (1) and the magnitude of the coordination shift $\Delta \delta \ [\Delta \delta = \delta \ (\text{complex}) - \delta \ (\text{free ligand})]$ is in the range 28.3-30.5 ppm. On the other hand, the phosphonite phosphorus $[-P(OC_6H_5)_2 \text{ or } -P(O_2C_{20}H_{12})]$ chemical shifts (109.8–114.2 ppm) lie up-field as compared to the free ligands (1 and 2); the $\Delta\delta$ values are in the range -25.4 to -41.5 ppm. The ¹³C NMR spectra of **6–8** also indicate the presence of two diastereomers; two sets of allyl ¹³C resonances are observed in each case. The central allyl carbon resonance for the two diastereomers appears as two separate signals at 113.0-121.8 ppm. The

terminal allyl carbon resonances appear as doublet of doublets owing to coupling with the two different phosphorus nuclei present in the molecule. The terminal allyl carbon resonance *trans* to $-P(O_2C_{20}H_{12})$ gives rise to a signal at 89.8–96.4 ppm for these isomers. The other terminal allyl carbon at the *trans* position with respect to the $-PY_2$ ($Y = C_6H_5$ or OC_6H_5) group resonates at 84.1–90.6 ppm.

Three different allylic arrangements (syn/syn-, syn/ anti-, and antilanti-) are possible for the 1,3-disubstituted ally complexes (6-8), depending on the orientation of the two substituents (Me or Ph) with respect to the central allyl proton H_c [7b]. In addition, diastereomers can arise owing to different face coordination of the allyl moiety with the palladium centre [7c]. We performed detailed two-dimensional NMR studies (¹H-¹H DQF COSY, ¹H⁻¹H NOESY and ¹H⁻¹H ROESY) to ascertain the allylic arrangement in these complexes and their structures in solution. The COSY experiment clearly shows that the minor isomer **6b** contains two *anti* allylic protons at 3.94 ppm (H'_a) and 4.10 ppm (H_a) which are strongly coupled $({}^{3}J(H,H) = 12.0 \text{ Hz which is typical for anti cou-}$ pling) to the central allyl proton indicating that the two allyl methyl groups are situated in a syn position with respect to the central allyl proton H_c. For the major isomer **6a**, the resonances of the allylic protons H_a and H'_a overlap with each other at 4.50 ppm thus making their structural assignment difficult from the COSY spectrum. However, the ¹H–¹H NOESY spectrum unequivocally establishes a *syn/syn*- arrangement of the two allyl methyl groups in the major isomer **6a**. The ${}^{1}H{}^{-1}H$ NOESY spectrum shows two strong cross-peaks arising from the central allyl proton H_c to both the allyl-methyl protons in the isomer **6a** and **6b** supporting their syn/syn- allylic arrangements. The ¹H–¹H NOESY spectrum shows an NOE contact between the H'_a and ortho phenyl proton on the -PPh₂ group for the major isomer **6a** but no such NOE contact is observed for the minor isomer 6b. On the basis of this observation, the two isomers are formulated as shown in Fig. 1. The diastereomers arise because of dif-

Fig. 1. The two diastereomers of 1,3-disubstituted allyl palladium complex, $[Pd(\eta^{3}-1, 3-R'_{2}-C_{3}H_{3})\{\kappa^{2}-(racemic)-(C_{20}H_{12}O_{2})PN(CHMe_{2})Ph_{2}\}](PF_{6}) [R' = Me (6) or Ph (7)] observed in solution.$

ferent allyl face coordination to the palladium centre as we have observed in our previous studies [7c]. Similar results are obtained for the 1,3-diphenyl-allyl complex 7, which exists as a mixture of two diastereomers in the ratio 8:1 as revealed by its ${}^{31}P{}^{1}H{}$ NMR spectrum. The $^{1}\text{H}-^{1}\text{H}$ COSY spectrum suggests *syn/syn-* allylic arrangement in both the diastereomers of 7. The ${}^{1}H{}^{-1}H$ NOESY spectrum of 7 (shown in Fig. 2) displays a selective crosspeak between the *anti* allyl proton H'_a and ortho-phenyl proton (H_b) of the -PPh₂ group for the major diastereomer 7a; for the minor diastereomer 7b no such NOE contact between H'_a and ortho-phenyl proton of the -PPh₂ group is observed. The reaction of optically pure diphosphazane ligand, (R or S)- $(C_{20}H_{12}O_2)PN(CH-$ Me₂)PPh₂ with the 1,3-diphenyl-allyl dimer, $[Pd(\eta^{3}-1,3 Ph_2-C_3H_3(\mu-Cl)]_2$ also results in two isomers whose NMR spectra are identical to the diastereomers (7a and 7b) obtained with (racemic)- $(C_{20}H_{12}O_2)PN(CHMe_2)$ -PPh₂.

The reaction of the diphosphonite diphosphazane ligand, (racemic)- $(C_{20}H_{12}O_2)PN(CHMe_2)P(OC_6H_5)_2$ with the 1,3-dimethyl-allyl dimer, $[Pd(\eta^3-1,3-Me_2-C_3H_3)(\mu-Cl)]_2$ yields a light yellow complex which turns into a black mass over a period of few hours. By contrast, the reaction of the same ligand with the 1,3-diphenyl-allyl dimer, $[Pd(\eta^3-1,3-Ph_2-C_3H_3)(\mu-Cl)]_2$ gives an allyl complex, $[Pd(\eta^3-1,3-Ph_2-C_3H_3)(\mu-Cl)]_2$ gives an allyl complex, $[Pd(\eta^3-1,3-Ph_2-C_3H_3)\{\kappa^2-(racemic)-(C_{20}H_{12}-O_2)PN(CHMe_2)P(OC_6H_5)_2\}](PF_6)$ (8), which is stable to air and moisture. The stability of 8 is presumably due to mesomeric electron release from the phenyl groups into the allyl moiety. NMR spectroscopic data reveal that 8 exists as a mixture of two isomers (8a, 8b) in solution in the ratio 6:1 and their structures are similar to those of 6a/6b and 7a/7b (Fig. 1).

3.3. Solid state structure of $[Pd(\eta^3 - 1, 3 - Ph_2 - C_3H_3) \{\kappa^2 - (racemic) - (C_{20}H_{12}O_2)PN(CHMe_2)PPh_2\}](PF_6)$ (7a)

A crystallographic study has been carried out for the complex **7a**. The details of the crystal data are presented in Table 1. The solid state structure consists of only the major isomer **7a** as shown in Fig. 3. The molecule crystallises with one molecule of solvent toluene in the unit cell. The two terminal Pd–C(allyl) bond distances *trans* to $-PPh_2$ and *trans* to $-P(O_2C_{20}H_{12})$ are 2.220(3) and 2.183(3) Å, respectively, which fall within the range of the terminal Pd–C(allyl) bond distances observed for other structurally characterised allyl palladium complexes bearing a bidentate phosphorus ligand [23]. The geometry around palladium is distorted square planar. The P(1)–Pd(1)–P(2) bond angle is 70.4(1)⁰ which

Fig. 2. The ¹H–¹H NOESY (400 MHz, CDCl₃) spectrum of [Pd(η^3 -1,3-Ph₂-C₃H₃) { κ^2 -(*racemic*)-(C₂₀H₁₂O₂)PN(CHMe₂)PPh₂}](PF₆) (7) displaying selective NOE cross-peak between H'_a and the ortho-phenyl proton (H_b) on the –PPh₂ group in the major diastereomer **7a**.

Table 1

Crystal data and structure refinement for $[Pd(\eta^3-1,3-Ph_2-C_3H_3)\{\kappa^2-(\it racemic)-(C_{20}H_{12}O_2)PN(CHMe_2)PPh_2\}](PF_6)$ (7a)

Identification code	7a	
Empirical formula	$C_{50}H_{42}F_6P_3O_2NPd + 0.59 C_7H_8$	
Formula weight	1056.12	
Temperature (K)	173(2)	
Wavelength (Å)	0.71073	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions		
$a(\mathbf{A})$	12.9498(11)	
b (Å)	28.617(2)	
c (Å)	13.0417(11)	
β (°)	93.3430(10)	
Volume (Å ³)	4824.8(7)	
Z	4	
Density (calculated) (mg/m ³)	1.454	
Absorption coefficient (mm ⁻¹)	0.550	
F(000)	2157	
Crystal size (mm ³)	$0.40 \times 0.35 \times 0.05$	
Theta range for data collection (°)	1.42–26.44	
Index ranges	$-16 \le h \le 16$,	
	0<= <i>k</i> <=35,	
	0<= <i>l</i> <=16	
Reflections collected	51,332	
Independent reflections	10,063 $[R_{int} = 0.0348]$	
Completeness to theta = 26.44°	98.6%	
Refinement method	Full-matrix least-squares on F^2	
Data/restraints/parameters	10063/282/522	
Goodness-of-fit on F^2	1.077	
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	$R_1 = 0.0417, wR_2 = 0.1004$	
R indices (all data)	$R_1 = 0.0500, wR_2 = 0.1051$	
Largest different peak and hole $(e Å^{-3})$	1.834 and -0.646	

Fig. 3. The molecular structure of $[Pd(\eta^3-1,3-Ph_2-C_3H_3)\{\kappa^2-(racemic)-(C_{20}H_{12}O_2)PN(CHMe_2)PPh_2\}]$ (7a) in the solid state; hexafluorophosphate, lattice held toluene and hydrogen atoms [except H(1), H(2), H(3) and H(62)] are omitted for the sake of clarity.

deviates very much from the ideal value. The allyl plane formed by C(1), C(2) and C(3) atoms is not coplanar with the coordination plane formed by P(1)-Pd(1)- P(2); the two planes are inclined at an angle of 62.1° . The structure can be best described as shown below:

The P(1)–Pd(1)–P(2) plane is considered as the reference plane for this description. The central allyl carbon lies below this plane and the two terminal allyl carbon C(1) and C(3) lie above with respect to such a plane. The phenyl groups on the –PPh₂ groups are not symmetrically placed with respect to the coordination plane formed by P(1)–Pd(1)–P(2). The *ortho*-phenyl proton H(62) on one of these phenyl groups is close to the *anti* allylic proton H(1). From X-ray data, the estimated distance between H(62) and H(1) is 2.78 Å. This short distance is reflected in the NOE interaction between these protons in the major isomer **7a**.

3.4. Catalytic allylic alkylation reactions

The catalytic activity of the chiral diphosphazane ligands 1 and 2 has been tested in allylic alkylation reactions of the symmetrically substituted substrate, (racemic)-1,3-diphenyl-2-propenyl acetate (I) (Scheme 3) using dimethyl malonate anion as the nucleophile. The reaction is found to be complete within 24 h as shown by the ¹H NMR spectrum of the reaction mixture. The enantiomeric excess (ee) values and the configuration of the alkylated product are listed in Table 2. These "P–N–P" ligands give rise to only moderate levels of asymmetric induction. The ee values do not reflect the diastereomeric ratio observed for the two isomers of the η^{3} -1,3-diphenyl allyl palladium complexes, 7 and 8 (8:1 and 6:1 respectively), presumably because attack trans to the two different phosphorus atoms would lead to different product configurations.

Scheme 3.

Table 2

Entry	Diphosphazane ligand (L*)	Enantiomeric excess ^a (%)	Absolute configuration
(1)	(R) - $(C_{20}H_{12}O_2)PN(CHMe_2)PPh_2$	44	S
(2)	(S)-(C ₂₀ H ₁₂ O ₂)PN(CHMe ₂)PPh ₂	40	R
(3)	$(R)-(C_{20}H_{12}O_2)PN(CHMe_2)P(OC_6H_5)_2$	27	S
(4)	$(S)-(C_{20}H_{12}O_2)PN(CHMe_2)P(OC_6H_5)_2$	20	S

Results of catalytic allylic alkylation reactions of a symmetrically substituted substrate (*racemic*)-1,3-diphenyl-2-propenyl acetate using chiral diphosphazane ligands

^a The enantiomeric excess (ee) is calculated from the optical rotation value using the literature data [17]; the values are accurate to $\pm 5\%$.

4. Conclusions

A facile synthetic route for chiral and unsymmetrical bidentate phosphorus ligands based on the "P–N– P" motif and bearing 1,1'-binaphthyl-2,2'-dioxy moiety has been developed. The reactivity of some of these ligands towards η^3 -allyl palladium dimers has been investigated. The structures of η^3 -allyl palladium complexes have been probed by two-dimensional NMR techniques and X-ray crystal structure analysis. These chiral phosphorus ligands and their transition metal complexes would be potentially useful in enantioselective catalysis.

5. Supplementary material

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-230791. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: (internat.) +44(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk].

Acknowledgements

We thank the Department of Science and Technology (DST), New Delhi, India for financial support (SKM, GAN and SSK). Continuous financial support from the Deutsche Forschungsgemeinschaft, Germany is acknowledged (TS, DS).

References

- [1] (a) E.N. Jacobsen, A. Pfaltz, H. Yamamoto (Eds.), Comprehensive Asymmetric Catalysis, 1–3, Springer, Berlin, 1999;
 (b) B.L. E. A. Charles, A. Charles, Phys. 22 (2000) 244
 - (b) B.L. Feringa, Acc. Chem. Res. 33 (2000) 346;
 - (c) T. Hayashi, Acc. Chem. Res. 33 (2000) 354;
 - (d) M.J. Burk, Acc. Chem. Res. 33 (2000) 363;
- (e) R. Noyori, H. Takaya, Acc. Chem. Res. 23 (1990) 345.
- [2] (a) M.S. Balakrishna, V.S. Reddy, S.S. Krishnamurthy, J.F. Nixon, J.C.T.R. Burckett, St Laurent, Coord. Chem. Rev. 129 (1994) 1;

(b) M. Witt, H.W. Roesky, Chem. Rev. 94 (1994) 1163;

- (c) P. Bhattacharyya, J.D. Woollins, Polyhedron 14 (1995) 3367.
- [3] (a) N.C. Payne, D.W. Stephan, J. Organomet. Chem. 221 (1981) 203;

(b) R.P.K. Babu, S.S. Krishnamurthy, M. Nethaji, Tetrahedron: Asymmetry 6 (1995) 427.

- [4] (a) A. Badía, R. Navarro, E.P. Urriolabeitia, J. Organomet. Chem. 554 (1998) 105;
 (b) Y. Gimbert, F. Robert, A. Durif, M.-T. Averbuch, N. Kann, A.E. Greene, J. Org. Chem. 64 (1999) 3492.
- [5] (a) G. Calabrò, D. Drommi, C. Graiff, F. Faraone, A. Tiripicchio, Eur. J. Inorg. Chem. (2004) 1447;
 (b) G. Calabrò, D. Drommi, G. Bruno, F. Faraone, Dalton Trans. (2004) 81.
- [6] (a) K. Raghuraman, S.K. Mandal, T.S. Venkatakrishnan, S.S. Krishnamurthy, M. Nethaji, Proc. Indian Acad. Sci. (Chem. Sci.) 114 (2002) 233;
 (b) K. Raghuraman, S.S. Krishnamurthy, M. Nethaji, J. Chem. Soc., Dalton Trans. (2002) 4289;
 (c) K. Raghuraman, S.S. Krishnamurthy, M. Nethaji, J. Organomet. Chem. 669 (2003) 79;
 (d) T.S. Venkatakrishnan, M. Nethaji, S.S. Krishnamurthy, Curr. Sci. 85 (2003) 969.
- [7] (a) S.K. Mandal, G.A.N. Gowda, S.S. Krishnamurthy, C. Zheng, S. Li, N.S. Hosmane, Eur. J. Inorg. Chem. (2002) 2047;
 (b) S.K. Mandal, G.A.N. Gowda, S.S. Krishnamurthy, M. Nethaji, Dalton Trans. (2003) 1016;
 (c) S.K. Mandal, G.A.N. Gowda, S.S. Krishnamurthy, C. Zheng, S. Li, N.S. Hosmane, J. Organomet. Chem. 676 (2003) 22.
- [8] (a) B.M. Trost, T.R. Verhoeven, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 8, Pergamon Press, Oxford, 1982, p. 799;
 (b) T. Hayashi, in: I. Ojima (Ed.), Catalytic Asymmetric Synthesis, VCH Publishers, New York, 1993, p. 325, and references cited therein;
 (c) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994, p. 82.
- [9] (a) G. Helmchen, A. Pfaltz, Acc. Chem. Res. 33 (2000) 336;
 (b) B.M. Trost, D.L.V. Vranken, Chem. Rev. 96 (1996) 395;
 (c) G. Consiglio, R.M. Waymouth, Chem. Rev. 89 (1989) 257;
 (d) G. Helmchen, J. Organomet. Chem. 576 (1999) 203;
 (e) C.G. Frost, J. Howarth, J.M.J. Williams, Tetrahedron: Asymmetry 3 (1992) 1089.
- [10] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, third ed., Pergamon Press, Oxford, UK, 1988.
- [11] M. Noji, M. Nakajima, K. Koga, Tetrahedron Lett. 35 (1994) 7983.
- [12] Q-S. Hu, D. Vitharana, L. Pu, Tetrahedron: Asymmetry 6 (1995) 2123.
- [13] P.R. Auburn, P.B. Mackenzie, B. Bosnich, J. Am. Chem. Soc. 107 (1985) 2033.
- [14] P. von Matt, G.C. Lloyd-Jones, A.B.E. Minidis, A. Pfaltz, L. Macko, M. Neuburger, M. Zehnder, H. Rueegger, P.S. Pregosin, Helv. Chim. Acta 78 (1995) 265.

- [15] R.P.K. Babu, K. Aparna, S.S. Krishnamurthy, M. Nethaji, Phosphorus, Sulfur, Silicon Relat. Elem. 103 (1995) 39.
- [16] (a) N. Greene, T.P. Kee, Synth. Commun. 23 (1993) 1651;
 (b) M.J. Baker, P.G. Pringle, J. Chem. Soc., Chem. Commun. (1991) 1292.
- [17] D.A. Evans, K.R. Campos, J.S. Tedrow, F.E. Michael, M.R. Gagné, J. Am. Chem. Soc. 122 (2000) 7905.
- [18] D. Stalke, Chem. Soc. Rev. 27 (1998) 171.
- [19] Bruker-AXS Inc., SAINT-NT, Madison WI, 2000.
- [20] G.M. Sheldrick, SADABS 2.0, University of Göttingen, 2000.

- [21] G.M. Sheldrick, Acta Crystallogr. Sect. A 46 (1990) 467.
- [22] G.M. Sheldrick, SHELXL-97, University of Göttingen, 1997.
- [23] (a) U. Nettekoven, M. Widhalm, H. Kalchhauser, P.C.J. Kamer, P.W.N.M. van Leeuwen, M. Lutz, A.L. Spek, J. Org. Chem. 66 (2001) 759;
 - (b) D. Drago, P.S. Pregosin, J. Chem. Soc., Dalton Trans. (2000) 3191;

(c) P.S. Pregosin, H. Rüegger, R. Salzmann, A. Albinati, F. Lianza, R.W. Kunz, Organometallics 13 (1994) 83.